

Frequency of Extreme Events and Injury Risk from Motor Vehicle Accidents in Maryland, USA

Ann Liu^{2*}, Sutyajeet Soneja^{1*}, Chengsheng Jiang¹, Chanjuan Huang¹, Clifford Mitchell², and Amir Sapkota¹

¹Maryland Institute of Applied Environmental Health, ²Maryland Department of Mental Health and Hygiene, *Co-First Authors

Contact: amirsap@umd.edu

Introduction

- Motor vehicle collisions are among the leading causes for morbidity and mortality across the U.S. In 2013, 2.3 million injuries occurred as a result of a collision.
- Several studies have shown varying associations between an increase in precipitation and motor vehicle collisions.
- Recent IPCC report suggest that extreme weather events will continue to increase in intensity, frequency, and duration in response to changing climate.
- There is limited understanding of the relationship between the frequency of extreme precipitation and heat events and injury as well as death from motor vehicle collision.

Case Information and Analysis Approach

Study Area

The State of Maryland, U.S.A.

Exposure Metric

Extreme heat and precipitation days

Data

- 461,009 injuries or death due to motor vehicle collisions in Maryland from 2000 to 2012
- Source: Maryland Automated Accident Reporting System

Monthly Average of Extreme Precipitation Events By Season 2000-2012

Approach

- Extreme heat and precipitation events were identified using location and calendar day specific thresholds (95th %ile for heat, 90th %ile for precipitation) calculated using 30 year baseline (1960-1989).
- Collision data were combined with extreme heat and precipitation.

Statistical Analysis

• Time-stratified, bidirectional, semi-symmetric case-crossover design used to assess the associations between extreme heat and precipitation events and risk of injury and death as a result of a motor vehicle collision.

Table 1. Motor vehicle injuries (including death) by season and road type from January 1, 2000 to December 14, 2012.

	Motor Vehicle Injuries – No. (%) Categorized by Season ^a				
Characteristic	Spring	Summer	Autumn	Winter	Total
Road Type (all)	115,299 (25.0)	120,258 (26.1)	119,509 (25.9)	105,943 (23.0)	461,009
No Information	110,900 (25.1)	115,740 (26.2)	115,054 (26.0)	100,635 (22.8)	442,329
Road w/o Defects	2,240 (23.9)	2,140 (22.8)	2,220 (23.7)	2,773 (29.6)	9,373
Road with Defects	2,159 (23.2)	2,378 (25.6)	2,235 (24.0)	2,535 (27.2)	9,307

Results

Odds Ratio (95%CI): Exposure to Extreme Precipitation Analysis

Odds Ratio (95%CI): Exposure to Extreme Heat Analysis

Summary

- Across Maryland, a one day increase in extreme precipitation event was associated with an 18% increase in injury from motor vehicle collision. The risk increased to 29% for extreme precipitation events during autumn.
- Extreme precipitation related increase in injuriy due to motor vehicle collision was considerably higher when a road defect or obstruction was present (OR: 1.42, 95% CI: 1.32, 1.52).
- Changes in risk associated with extreme heat were generally marginal.

References

- Field CB, Barros V, Stocker TF, Dahe Q, Dokken DJ, Ebi KL, et al. IPCC, 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2012.
- Jiang C, Shaw KS, Upperman CR, Blythe D, Mitchell C, Murtugudde R, et al. Climate change, extreme events and increased risk of salmonellosis in Maryland, USA:
- Evidence for coastal vulnerability. Environ Int. 2015 Oct;83:58–62.

 Soneja S, Jiang C, Romeo Upperman C, Murtugudde R, S. Mitchell C, Blythe D, et al. Extreme precipitation events and increased risk of campylobacteriosis in Maryland,
- U.S.A. Environ Res. 2016 Aug;149:216–21.
 Koetse MJ, Rietveld P. The impact of climate change and weather on transport: An overview of empirical findings. Transp Res Part Transp Environ. 2009 May;14(3):205–
- Eisenberg D. The mixed effects of precipitation on traffic crashes. Accid Anal Prev. 2004 Jul;36(4):637–47.

Acknowledgements

Research Collaborators and Funding

Special thanks to Jared Fisher for his assistance on the analysis portion. Grant support from U.S. Centers for Disease

Control and Prevention (CDC) (1UE1EH001049-01 and 5U01C1000310)

Percentages may not sum to 100% due to rounding a Seasons are: spring (March-May); summer (June-August); autumn (September-November); and winter (December-February)